Counting spanning trees using modular decomposition

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting spanning trees using modular decomposition

In this paper we present an algorithm for determining the number of spanning trees of a graph G which takes advantage of the structure of the modular decomposition tree of G. Specifically, our algorithm works by contracting the modular decomposition tree of the input graph G in a bottom-up fashion until it becomes a single node; then, the number of spanning trees of G is computed as the product...

متن کامل

Counting Spanning Trees in Graphs Using Modular Decomposition

In this paper we present an algorithm for determining the number of spanning trees of a graph G which takes advantage of the structure of the modular decomposition tree of G. Specifically, our algorithm works by contracting the modular decomposition tree of the input graph G in a bottom-up fashion until it becomes a single node; then, the number of spanning trees of G is computed as the product...

متن کامل

Counting the number of spanning trees of graphs

A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.

متن کامل

Counting Spanning Trees∗

This book provides a comprehensive introduction to the modern study of spanning trees. A spanning tree for a graph G is a subgraph of G that is a tree and contains all the vertices of G. There are many situations in which good spanning trees must be found. Whenever one wants to find a simple, cheap, yet efficient way to connect a set of terminals, be they computers, telephones, factories, or ci...

متن کامل

Counting Minimum Weight Spanning Trees

We present an algorithm for counting the number of minimum weight spanning trees, based on the fact that the generating function for the number of spanning trees of a given graph, by weight, can be expressed as a simple determinant. For a graph with n vertices and m edges, our algorithm requires O(M(n)) elementary operations, whereM(n) is the number of elementary operations needed to multiply n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 2014

ISSN: 0304-3975

DOI: 10.1016/j.tcs.2014.01.012